Illuminating Electron Microscopy of Photocatalysts

F. Cavalca1*, T. W. Hansen1, J. B. Wagner1, B. E. Kardynal2 and R. E. Dunin-Borkowski2

1 Center for Electron Nanoscopy, Technical University of Denmark, Fysikvej, Building 307, DK-2800 Lyngby, Denmark
2 Department of Photonics Engineering, Technical University of Denmark, Ørsteds Plads 343, DK-2800 Lyngby, Denmark
*fica@cen.dtu.dk

Background
Photocatalysts are of fundamental interest for sustainable energy research. By means of transmission electron microscopy (TEM) it is possible to obtain deep insight into the structure, composition and operation of photocatalysts. The internal environment of a TEM can be modified in order to perform real time in situ experiments with light [1] or under other nonconventional TEM conditions. This project is part of the CAntalysis for Sustainable Energy (CASE) initiative and involves characterization of catalysts using methods available at DTU Cen.

Applications
- Photocatalysts: Experiments under controlled gas and light exposure.
- Solar cells: Real time in situ electrical measurements of light harvesting materials and structures.
- Fundamental physics: Monitor light-matter interactions at the nanoscale.

Goals
- Study photo-induced effects on photocatalysts at the nanoscale.
- Investigate how photoreactive nanostructures behave under light exposure.
- Perform characterization of photocatalytic materials under simulated working environment (gas and light).

Focus
Experiments are performed to study light-induced phenomena:
- Structural changes
- Photoconductivity effects
- Variations in electromagnetic potentials

Projects
- Characterization of a GaZnNO-based photocatalyst for water splitting application (see figure).
- Characterization of GaAs nanowires for solar cells application.

Reference

Acknowledgement:
The Catalysis for Sustainable Energy initiative is funded by the Danish Ministry of Science, Technology and Innovation.

Experimental setup
A novel specimen holder capable of shining light onto samples inside the TEM has been developed.

The laser shines light into the holder from this position.

Working principle
The holder is implemented with a laser diode and a lens system guiding and focusing light onto the sample surface with maximum power transmission (no fiber optics). The source can be changed and tuned, in principle spanning the whole visible and UV light spectrum.

It is possible to use the device inside DTU Cen's Environmental TEM to expose a specimen to a controlled gas atmosphere during illumination.

Prospects
- Feedthroughs of different kinds will be used to study a number of interactions with the specimen such as introducing electrodes, probes, magnetizing coils, heat and forces acting on the sample.
- A vacuum chamber for ex-situ experiments will be used to recreate the microscope environment and to allow performance tests and preliminary assessments before moving to the microscope.