Off-axis electron holography of doped semiconductors

Off-axis electron holography

Off-axis electron holography uses a biprism to interfere an electron wave that has passed through a sample with a reference wave that has passed through vacuum. In the absence of magnetic fields and strong diffraction contrast, the phase change, \(\Delta \phi \), of an electron wave passing through a material with electrostatic potential \(V_e \) is given by the expression:

\[
\Delta \phi = C_e V_e t
\]

where \(C_e \) is a constant that depends on the energy of the electron beam and \(t \) is the sample thickness.\(^1\)

Motivation

- Electron holography can provide high resolution 2-D maps of the phase shift across a specimen.
- In some circumstances the phase shift is directly proportional to the mean inner potential, therefore the electrostatic potential arising from dopant atoms in the semiconductor device is revealed.
- Electron holography can provide the semiconductor industry with a 2-D and 3-D dopant profiling technique, which can reach sub-10nm resolution.

Sample preparation using focused ion beam milling.

FIB (focused ion beam) milling is a site-specific technique ideally suited for thinning samples containing semiconductor devices.
- Samples of uniform thickness can be prepared.
- FIB milling creates amorphous surface layers with significant Ga implementation.
- In addition, sample preparation may also create surfaces with a different, unknown potential distribution.

Discussion of results

The built-in potential, \(V_B \), across a p-n junction can be calculated using equation (3), where \(k \) is Boltzmann’s constant, \(T \) the temperature, \(q \) the charge on an electron, \(N_D \) and \(N_A \) the donor and acceptor doping concentration respectively.

\[
V_B = \frac{kT}{q} \ln \left(\frac{N_A}{N_D} \right) \tag{3}
\]

This can be substituted into equation (1) to reveal the expected phase change across a p-n junction.

Conclusions

- It has been shown that FIB-prepared GaAs samples have a larger electrically ‘dead’ layer than Si.
- The electrically ‘dead’ layers may be associated with Ga+ implantation in the FIB.
- Further work is required to determine the mechanism of this damage.
- More advanced sample preparation techniques are required in order to characterise the electrical properties of semiconductors using electron holography.

References

We would like to thank the EPSRC, Newham College and the Royal Society for financial support.