Non-destructive measurement of orbital angular momentum of an electron beam

H. Larocque1,2, F. Bouchard1,2, V. Grillo3, A. Sit1,2, S. Frabboni3, R. E. Dunin-Borkowski4, M. J. Padgett5, R. W. Boyd1,2,6 and E. Karimi1,2,7

1Department of Physics, University of Ottawa, 25 Templeton St., Ottawa, Ontario, K1N 6N5, Canada
2The Max-Planck Centre for Extreme and Quantum Photonics, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
3CNR-Istituto Nanoscienze, Centro S3, Via G Campi 213/a, I-41125 Modena, Italy
4Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons, Forschungszentrum Jülich, Jülich 52425, Germany
5School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, Scotland, UK
6Institute of Optics, University of Rochester, Rochester, New York, 14627, USA
7Department of Physics, Institute for Advanced Studies in Basic Sciences, 45137-66731 Zanjan, Iran

E-mail: hlar014@uottawa.ca

Free electrons with a helical phase-front, referred to as "twisted" electrons, possess a quantized magnetic dipole moment along their propagation direction \cite{1}. This intrinsic magnetic moment can be used to probe material properties; thus, twisted electrons find numerous potential applications in materials science \cite{2}. Determining the electron beam's magnetic dipole moment is an essential key to these applications. All currently available techniques, adopted from their optical counterparts, rely on a series of projective measurements that subsequently change the orbital angular momentum (OAM) carried by the electrons, and consequently their magnetic moment \cite{3}. We propose a non-destructive way of measuring an electron beam's OAM through the interaction of this magnetic dipole with a conductive loop. Such an interaction results in the generation of induced currents within the loop, which are found to be directly proportional to the electron's OAM value. Moreover, the electron experiences no OAM variations and minimal energy losses upon the measurement, and hence the non-destructive nature of the proposed technique.

References